The bio fuel industry is growing at a rapid pace. However, from a process safety point of view, it is hazardous as it deals with flammable chemicals like ethanol. An article mentions the following:
"Steel tanks containing fuel-grade ethanol develop leaks due to stress corrosion cracking, says Oliver Moghissi, president of the National Association of Corrosion Engineers. Corrosion can be an issue near vents and any external appurtenances exposed to air, allowing ethanol to pick up moisture. Storing hydrous ethanol can produce even more corrosion due to higher water content.
There are a number of corrosion mitigation strategies, he adds, drawing on technical input from Narasi Sridhar, vice president of DNV USA, a classification society, and a fellow member of NACE. Galvanic sacrificial coatings, such as zinc or aluminum, will protect steel tanks containing ethanol. The main limitation to this system of corrosion mitigation is that it could have a negative effect on product quality. “Any dissolved metal species in the ethanol can render the ethanol unacceptable to the automotive industry, its main customer,” he tells EPM. “Any galvanic coating therefore must be tested rigorously by the end-user, the automotive community, which can be time consuming and expensive.”
Cathodic protection, however, doesn’t work for the insides of metal structures containing ethanol, the corrosion engineers add. The fuel has low electrical conductivity when compared to water and, as a result, much of the applied voltage is insulated from the metal needing to be protected. “Therefore, impressed or sacrificial cathodic protection systems will not work in ethanol,” Moghissi says. “In ethanol-gasoline mixtures, the situation is even worse since gasoline has a lower electrical conductivity than ethanol.”Read the full article in this link.
"Steel tanks containing fuel-grade ethanol develop leaks due to stress corrosion cracking, says Oliver Moghissi, president of the National Association of Corrosion Engineers. Corrosion can be an issue near vents and any external appurtenances exposed to air, allowing ethanol to pick up moisture. Storing hydrous ethanol can produce even more corrosion due to higher water content.
There are a number of corrosion mitigation strategies, he adds, drawing on technical input from Narasi Sridhar, vice president of DNV USA, a classification society, and a fellow member of NACE. Galvanic sacrificial coatings, such as zinc or aluminum, will protect steel tanks containing ethanol. The main limitation to this system of corrosion mitigation is that it could have a negative effect on product quality. “Any dissolved metal species in the ethanol can render the ethanol unacceptable to the automotive industry, its main customer,” he tells EPM. “Any galvanic coating therefore must be tested rigorously by the end-user, the automotive community, which can be time consuming and expensive.”
Cathodic protection, however, doesn’t work for the insides of metal structures containing ethanol, the corrosion engineers add. The fuel has low electrical conductivity when compared to water and, as a result, much of the applied voltage is insulated from the metal needing to be protected. “Therefore, impressed or sacrificial cathodic protection systems will not work in ethanol,” Moghissi says. “In ethanol-gasoline mixtures, the situation is even worse since gasoline has a lower electrical conductivity than ethanol.”Read the full article in this link.
No comments:
Post a Comment