September 7, 2011

Boiler explosion in Gujarat

"The Hindu" newspaper has reported a boiler explosion in a diary in Gujarat that has killed 7 and injured 21 others. Apparently a leaking gas pipeline was being repaired when the explosion occurred. In many companies, I have observed hot work allowed in many gas fired utility boilers and incinerators after the operators have just isolated the natural gas supply but not blinding it. In one case, the operators had isolated the natural gas to the burner of a utility boiler and removed the burner. Their argument was that they have disconnected the burner and hence no gas could get into the boiler. However, the open gas pipe (after the burner was removed) was pointing towards the boiler and when we tested the area around the pipe with a flammable gas detector, it was in flammable range. Do not depend on isolation valves alone to stop the gas from leaking through.
Read about the boiler explosion in this link.

September 6, 2011

Caustic Soda - process safety

As part of their Responsible Care commitment, DOW Chemicals has published a pdf file called "Caustic Soda Solution Handbook". It contains useful data that will be required on a day to day basis for storage and handling as well as transportation. Download it from this link. (large file...be patient)

September 4, 2011

Bromine leak in Russia

The BBC reports that at least 42 people received hospital treatment in the Russian city of Chelyabinsk after a leak of the toxic chemical bromine in a rail incident. Apparently about 2000 two liter glass bottles of bromine was being transported by rail and it is estimated that about 24 to 50 liters were released. Read the report in this link See a video of the leak in this link.

September 3, 2011

"Automation Addiction" in flying and its relation to process safety

Joan Lowy of AP has written an article mentioning the following:
'Pilots' "automation addiction" has eroded their flying skills to the point that they sometimes don't know how to recover from stalls and other mid-flight problems, say pilots and safety officials. The weakened skills have contributed to hundreds of deaths in airline crashes in the last five years.
Some 51 loss of control" accidents occurred in which planes stalled in flight or got into unusual positions from which pilots were unable to recover, making it the most common type of airline accident, according to the International Air Transport Association.
"We're seeing a new breed of accident with these state-of-the art planes," said Rory Kay, an airline captain and co-chair of a Federal Aviation Administration advisory committee on pilot training. "We're forgetting how to fly."
Read the article in this link.

This has direct relations to the Chemical Process Industry. With so much automation in our idndustry, I am sure that operators are really forgetting their troubleshooting skills in the event of an emergency. Dr Trevor Kletz has always propounded that things must be kept simple and the way process control manufacturers are developing and implementing "solutions" for process safety, it leaves me dumbstruck. In another post, I had written that today I see operators who are becoming "procedural robots" during emergencies and plant upsets. This is a dangerous situation. Simulators do help in keeping operators skills up to date but management often thinks that it is a waste of money. Cluster simulation training ( for processes that have the same licensor) could be started, with companies pooling in for a common simulator training facility.

September 2, 2011

Counterfeit bearings and process safety

An interesting article about counterfeit bearings mentions how good the counterfeiters are getting. In today's competitive environment, organisations look at cutting costs. Sometimes this may lead one to purchase a lower priced product that seems to meet all specs, but can be a counterfeit. I know of cases where wrong metal plate materials have caused incidents. Make sure you have a robust positive material identification system for your incoming items.
Read the article here. Are you bearing an unnecessary risk? Randy L. Bowen, SKF USACounterfeit bearings can lead to equipment downtime and safety problems.

September 1, 2011

Earthquakes and Process Safety

The recent earthquake that hit the East coast of US has triggered a number of articles on the possibility of earthquakes in areas which are not normally earthquake prone. An article in the Economic Times mentions the following:
'Residents of the east coast of the United States generally think of themselves as safe from earthquakes. This feeling was given a jolt on August 23 when a 5.9-magnitude earthquake hit near the town Mineral in Virginia. Nobody died, but a nuclear reactor there shut down by itself as its electricity supply tripped. This nuclear plant was designed to withstand earthquakes of magnitude up to 6.2 on the Richter scale. The designers of the plant had thought that Virginia would not experience stronger earthquakes, but the tremor last week was uncomfortably close to the limit.
Central India, on the other hand, has a high degree of bulge from flexure due to stress built up from the Himalayas. Recent studies have discovered this stress as much as 1,000 km south of the Himalayas. The 1993 Latur earthquake had happened at a region of stress. This earthquake, measuring 6.4, had shocked seismologists as they had never expected an earthquake to happen there. The lessons of the recent spate of intraplate earthquakes are clear. A large portion of India lies in hazardous zones, a fact that is relevant to rapidly expanding nuclear power industry in India.
Given the ability of intraplate earthquakes to surprise, one should expect damaging earthquakes at many places in the country. Even southern cities are not entirely safe, although seismologists do not expect even moderate earthquakes to happen there. Many high-rise buildings are built without following any codes. Especially vulnerable are those on stilts and those built on or near dried lakes. The city of Bangalore is full of such buildings. So are several other cities in the country. Are we inching towards one of our worst natural disasters? "
Read the full article in this link.
A chemical plant that is not designed to the current earthquake resistance standards can be the cause of catastrophic accidents. There are large storage tanks containing highly hazardous materials in many plants and imagine the impact if their contents come out during an unanticipated earthquake!

August 26, 2011

The importance of 'O' rings in process safety

I read an article about the importance of secondary seals to prevent leaks. Mr Larry Bachus, in his article mentions the following:
'About half of all pumps in the maintenance shop today were pulled out of service because they were leaking or wouldn’t hold pressure. This is most likely a leaking gasket or o-ring. The o-ring is the rubber component of most pump seals and most instrumentation fittings. The o-ring controls the temperature, pressure, and chemical limits of the device. The difference between a flowmeter in alcohol service and a flowmeter in condensate service is the o-ring. It is not the stainless steel, or the strict tolerances, or the flange bolts. The difference between a mechanical seal in ammonia service and a mechanical seal in propane service is the o-ring. The people who assemble instrumentation devices and parts for the chemical process industries install o-rings that are adequate to perform the static pressure and vacuum test on the part at the factory, which is normally done with water or air. The ultimate user must verify that the factory-installed o-rings are correct for the pumped product application (take into account temperature, pressure, chemical compatibility, and shelf life)".
Read the full article in this link.

August 21, 2011

Hydrogen peroxide accident kills two

Thanks to Abhay Gujar for sending information about an accident in a chemical unit in Hyderabad tht has killed two women. As per the Times of India article, "The incident took place at 11.30am when the two workers were mixing hydrogen peroxide, methyl ethyl ketone and sodium sulphate to produce a chemical substance used in the manufacturing of asbestos sheet moulds and coolants. The high intensity of the explosion damaged a portion of the chemical unit's roof and severely injured both Venkata Lakshmi and Kalpana". Read the article in this link.

The MSDS of hydrogen peroxide warns of the following:
"Soluble fuels (acetone, ethanol, glycerol) will detonate on a mixture with peroxide over 30% concentration, the violence increasing with concentration. Explosive with acetic acid, acetic anhydride, acetone, alcohols, carboxylic acids, nitrogen containing bases, As2S3, Cl2 + KOH, FeS, FeSO4 + 2 methylpryidine + H2SO4, nitric acid, potassium permanganate, P2O5, H2Se, Alcohols + H2SO4, Alcohols + tin chloride, Antimoy trisulfide, chlorosulfonic acid, Aromatic hydrocarbons + trifluoroacetic acid, Azeliac acid + sulfuric acid (above 45 C), Benzenesulfonic anhydride, tert-butanol + sulfuric acid, Hydrazine, Sulfuric acid, Sodium iodate, Tetrahydrothiophene, Thiodiglycol, Mercurous oxide, mercuric oxide, Lead dioxide,
Lead oxide, Manganese dioxide, Lead sulfide, Gallium + HCl, Ketenes + nitric acid, Iron (II) sulfate + 2-methylpyridine + sulfuric acid, Iron (II) sulfate + nitric acid, + sodium carboxymethylcellulose (when evaporated), Vinyl acetate, trioxane, water + oxygenated compounds (eg: acetaldehyde, acetic acid, acetone, ethanol, formaldehyde, formic acid, methanol, 2-propanol, propionaldehyde), organic compounds. Beware: Many mixtures of hydrogen peroxide and organic materials may not explode upon contact. However, the resulting combination is detonatable either upon catching fire or by impact.
EXPLOSION
HAZARD: SEVERE, WHEN HIGHLY CONCENTRATED OR PURE H2O2 IS EXPOSED TO HEAT, MECHANICAL IMPACT, OR CAUSED TO DECOMPOSE CATALYTICALLY BY METALS & THEIR SALTS, DUSTS & ALKALIES. ANOTHER SOURCE OF HYDROGEN PEROXIDE EXPLOSIONS IS FROM SEALING THE MATERIAL IN STRONG CONTAINERS.UNDER SUCH CONDITIONS EVEN GRADUAL DECOMPOSITION OF HYDROGEN PEROXIDE TO WATER + 1/2 OXYGEN CAN CAUSE LARGE PRESSURES TO BUILD UP IN THE CONTAINERS WHICH MAY BURST EXPLOSIVELY.
"

Hazards and precautions while handling sulphuric acid

Sulphuric acid is used in many chemical plants. NorFalco, as part of their "Responsible Care" commitment have published a very good reference called " Sulphuric acid handbook" which is available in this link. (it is a 3.8 MB pdf file)

August 17, 2011

Fire in pesticide unit in AP

Thanks to Abhay Gujar for sending info on a fire in a pesticide manufacturing unit in A.P. The article mentions the following: "In a major industrial mishap, two persons were charred to death in a fire and blast in a reactor of a pesticides manufacturing company at Cheruvukommupalem in Prakasam district in the wee hours of Wednesday.The fire broke out in the third production block at about 2.30 a.m in the third floor of the plant following suspected "electric short circuit", resulting in a blast in one of the four solvent distilling reactors at the Bhagiradha Chemicals & Industries Limited (BCIL), Revenue Division Officer K Naga Babu said. Four others working in the ground floor fled to safety".
Read the article in this link.

Distilleries are Dangerous!

I have visited many distilleries in sugar plants. When compared to chemical plants, the operators knowledge of process safety is limited. In one of the distilleries, the operators were not aware of the reason why the water level was being maintained at the bottom of a flare tower. As experienced people leave the organization, it becomes all the more important for management to implement a process safety management system in distilleries. An incident in a distillery which experienced a nitric acid spill and was subsequently closed is given in this link.

August 15, 2011

Static electricity and CO2 extinguishers

Thanks to Mr Harbhajan Singh Seghal for sending this incident:
"During the plant round of Shift Incharge at Compressor House, it was observed that there is smoke and spark on Non-Drive side bearing of Cooling Tower No.1 – Pump No.D. Immediately this pump was stopped. After stopping the pump fire took place at that place which was extinguished by CO2 Fire Extinguisher. While carbon dioxide cylinder was opened for extinguishing the fire, it was observed that there was continuous spark from the surface of the horn (Outlet Black Nozzle) of the Carbon Dioxide Cylinder. This was informed to Fire Section. As per Fire Section, this is due to static current".

A safety bulletin prepared by the safety advisory group mentions the following:
"The Safety Advisory Group, SAG, has been informed of several fatal accidents caused by explosions which occurred while using CO2 during inerting equipment and storage tanks that had previously contained flammable materials. In most cases the flammable
materials were liquids or gases but dust explosions may also be triggered by the same cause.
Examples of fatalities:
• Two navy firemen were killed in an explosion while attempting to inert an 18,9 m3 Jet Fuel tank by use of portable CO2 fire extinguisher.
• Four persons were killed in an explosion on board the tanker Alva Cape while inerting naphtha tanks using CO2 cylinders.
• Twenty nine persons were killed in an explosion while witnessing the demonstration of a newly installed CO2 fire-extinguishing system for a partially filled 5000 m3 jet fuel tank, in Bitburg, Germany.
Subsequent investigations have shown that, during the inerting process, static charges of several tens of kV were generated and accumulated at the end of the piping connected to the tank. Voltage of this nature is sufficient to produce sparks which act as points of ignition for the flammable mixtures. When liquid CO2 expands up to absolute pressures of less than approximately 5 bars, the result is the formation of small particles of solid CO2 (dry ice). As the two-phase solid/gas flows through the piping, static charges are produced by the particles rubbing against other particles, between themselves, piping and equipment. Subsequently, these charges accumulate in the zones that are not earthed/grounded at the end of the pipelines, most often in valves and nozzles. The sizes of these fields, as determined by experiments, can reach values of between 50 and 180 kV/m. Similarly, static electricity can be generated by the dry ice particles after they leave the discharge nozzle.
The pressure and impurities in the CO2, equipment materials in transfer line hoses, etc. all influence the generation of static electricity".

Read the safety bulletin in this link.