Pages

September 14, 2011

Refinery cited for PSM violations

A news item mentions that a refinery has been cited in the US for PSM violations. Included in the serious violations are "failing to investigate incidents as being related to process safety management, equipment repair, address inconsistent thickness measurements collected during pressure vessel inspections, maintain accurate and updated engineering drawings, and ensure that written operating procedures were certified as being current and accurate".
Read the article in this link

September 10, 2011

Dust explosions - Ignorance is Deadly!


A dust explosion can be deadly. The sugar dust explosion at Imperial Sugar Industries, Port Wentworth, Georgia, USA in 2008 killed 11 people and injured 42 workers, some of them critically. Dust explosions have known to occur as far back as the 18th century when a baker reported an explosion in a flour warehouse. Most organic materials and many metals will burn or explode if they are finely divided and dispersed in air and contact an ignition source. Dust explosions have occurred in a many industries including flour, coal, aluminum, plastic, vitamins, pharmaceutical compounds, sugar, tea, corn starch etc.A normal fire triangle consists of fuel, oxygen and ignition source. However for a dust explosion to occur, two additional elements are required – dispersion of the combustible dust in air in a concentration sufficient to ignite and confinement.Hence for a dust explosion to occur, the following are needed:
1. Fuel
2. Air (oxygen)
3. Ignition source
4. Dispersion of combustible dust
5. Confinement (The confinement causes and explosion to occur)
The above 5 elements needed for a dust explosion to occur are called a dust explosion pentagon.
The damage from a dust explosion is catastrophic because the primary dust explosion causes the loose dust present in beams and on top of other equipment to shake loose and fall down. This causes a secondary explosion which is far more deadly than the first one. Thus the domino effect of the primary dust explosion can be carried forward through elevators, conveyors and silos. The result is a catastrophic explosion. NFPA 654 states that dust layers 1/32 inch thick can create hazardous conditions.
The Material Safety Data Sheets for many substances do not indicate the potential for dust explosions. Many organisations implement changes that inadvertently create an atmosphere for a dust explosion. Enclosing an open conveyor is one such change. The Chemical Safety Board of the USA has recorded 197 incidents involving dust explosions since 1980, with 109 fatalities and 592 injuries.
Preventing dust explosions:
To prevent a dust explosion, it is necessary to eliminate the fuel (combustible dust), oxygen or ignition source.
While complete elimination of the fuel (combustible dust) may not be possible, it is possible to eliminate the chance of a secondary explosion by proper training and housekeeping. Dust collectors must be maintained properly to avoid a drop in their collection efficiency. Another method is to add an inert material like rock dust into the combustible dust.
Complete removal of oxygen is also not possible in a system comprising of conveyors, elevators, bins and silos. Inerting (use of an inert gas) also brings along safety issues of asphyxiation of personnel.
Eliminating all sources of ignition may also not be possible. Normal sources of ignition include the following:
  •   Hot bearings and surfaces
  •   Static electricity
  •   Hot work (welding, cutting, brazing or spark producing activity)
  •   Electrical system including faulty equipment
Mitigating dust explosions:
Effective mitigation requires properly designed engineering solutions. These solutions include explosion venting, explosion suppression and explosion isolation.
Explosion Venting
Explosion vents are designed to direct the gases from a dust explosion to a safe location and prevent over pressurization and damaging the equipment. The location of the vent should be placed in such a way as not to harm personnel.
Explosion Suppression
An explosion suppression system consists of a pressure or temperature sensor that detects the start of a dust explosion and a chemical suppression or inerting system that is automatically activated when the start of an explosion is detected. The chemical suppression or inerting system cools or extinguishes the flame front before it can cause damage.
Explosion Isolation
The explosion isolation systems work on the principle of detecting a dust explosion early and isolating long sections of pipelines leading to the protected equipment. A fast acting valve is used to isolate the protected equipment. The explosion venting systems are not suitable for dusts that burn quickly as the flame front speed will be high in such cases.

September 9, 2011

Pictures of the boiler gas explosion


Thanks to Divyang B Shah for sending pictures of the boiler gas explosion I had mentioned two posts back. Pictures always speak a thousand words!



 







September 8, 2011

Generation next and Process Safety

I had given a presentation on Process safety management  to the Ankleshwar Chapter of Indian Institute of Chemical Engineers recently. A large number of young engineers were present. The chapter is doing good work by exposing the young engineers to the concepts of process safety management. In the audience, there were also young mechanical engineers who were working in chemical plants. We can prevent another Bhopal only by passing on the lessons learnt from Bhopal to the younger generation. The memories of Bhopal should not die with this generation but must always be kept fresh. Read my earlier post on the "Lessons from Bhopal - more so relevant today"

September 7, 2011

Boiler explosion in Gujarat

"The Hindu" newspaper has reported a boiler explosion in a diary in Gujarat that has killed 7 and injured 21 others. Apparently a leaking gas pipeline was being repaired when the explosion occurred. In many companies, I have observed hot work allowed in many gas fired utility boilers and incinerators after the operators have just isolated the natural gas supply but not blinding it. In one case, the operators had isolated the natural gas to the burner of a utility boiler and removed the burner. Their argument was that they have disconnected the burner and hence no gas could get into the boiler. However, the open gas pipe (after the burner was removed) was pointing towards the boiler and when we tested the area around the pipe with a flammable gas detector, it was in flammable range. Do not depend on isolation valves alone to stop the gas from leaking through.
Read about the boiler explosion in this link.