Showing posts with label Process design. Show all posts
Showing posts with label Process design. Show all posts

January 30, 2023

Optimizing Flare Operation Through Proper Design - Chemical Engineering

Optimizing Flare Operation Through Proper Design - Chemical Engineering: Flares play a critical role in many CPI facilities, to manage hydrocarbon emissions. To improve operating safety, protect personnel and the environment, and avoid costly shutdowns, molecular seal systems must be properly designed, operated and maintained. Follow this guidance to get the job done right.

November 3, 2022

Electrical Issues Spark Major Concern – Addressing Hazardous Area Electrical Installations Knowledge Gaps

"The purpose of this Safety Alert is to emphasize the importance of properly installed and maintained
listed or certified safe electrical equipment in hazardous areas in order to reduce the risk of fire or
explosion onboard vessels. The Coast Guard has seen a number of instances where there was a lack
of knowledge in the marine industry as it relates to the installation, training,
maintenance and inspection of these certified systems"

Read the alert in this link https://www.dco.uscg.mil/Portals/9/DCO%20Documents/5p/CG-5PC/INV/Alerts/USCGSA_0520.pdf?ver=2020-07-06-132441-980

August 23, 2022

August 20, 2022

Process Control Basics

Process Control Basics: We Provide Tools and Basic Information for Learning Process Instrumentation Electrical and Control Engineering.

June 8, 2022

ARE YOU SPECIFYING PRESSURE GAUGES CORRECTLY?

 Approximately 100lbs ammonia was released into an unoccupied processing room of an industrial facility when a pressure gauge failed on the liquid line to an ammonia evaporator. Inspection revealed that a second pressure gauge (on the hot gas line for the same installation) was pinned at maximum pressure. Both pressure gauges had a range of 0 to 150psi and were installed in a system with an operating pressure of 150 to 160psi. The pressure gauge failed from over-pressure operation.

Source: British Columbia Safety Authority

May 27, 2022

SAFETY IN DESIGN OF PIPING

 https://www.hydrocarbonprocessing.com/magazine/2018/february-2018/environment-and-safety/safety-in-design-during-piping-engineering

 "A process engineer must complete the preliminary preparations of process flow diagrams, material and energy balances, piping and instrumentation diagrams (P&IDs), process control philosophy, and identification of the hazardous nature of raw materials, chemicals, byproducts and final products. Afterward, documents including process equipment layout drawings (plan and elevation) and unit plot plans are issued to engineers from other disciplines.

Involving engineers from different disciplines in the design phase provides unique perspectives that add value to basic documents, such as improved safety design features. Discipline engineers are required to consider design and safety requirements that are applicable for their specific domain as per local, national, international, industry-specific and company standards and regulations, and good engineering practices.

The role of a piping engineer during the design of piping systems is explored here, as well as how that piping engineer can—from the initial design phase—lower the risks that can arise from handling hazardous materials, contribute to reducing potential liability and help create a safer environment for the public".

READ THE FULL ARTICLE IN LINK


 

May 19, 2022

WHAT IS A BLEVE?

  http://www.hrdp-idrm.in/e5783/e17327/e27015/e27750/

For a BLEVE situation following four conditions must be present:-

  1. There must be a substance in liquid form. Most of the destructive BELEV's that have occurred have involved flammable liquids and liquefied flammable gases. BLEVE can occur with any liquid, even water. The only difference is that with non¬flammable liquids there is no fireball. However, there will still be damaging effect including the propagating of creaks in the structure of the container together with possibility of subsequent failure and propulsion.
  2. The liquid must be in a container like sphere, bullet, and road/rail tanker.
  3. The contained liquid must be at a temperature above its normal boiling point at atmospheric pressure at the time container allows the pressure inside to build up above atmospheric pressure, the fluid, in the container is able to remain in the liquid state, even through its temperature is above its normal boiling point. This increase in pressure raises the Boiling point of the contained liquid above its boiling point.
  4. There must be a failure of the container in order to have BLEVE. This container failure can be due to following courses:
  • Flame impingement.
  • Internal structural weakness of the container
  • Failure of improperly designed SRV
  • Impact from a mechanical cause such a road accident, tanker derailment allowing flammable liquid to flow out.

 

March 12, 2022

Use Dry Fog to Control Coal Dust Hazards

Use Dry Fog to Control Coal Dust Hazards: Fogging systems have been successfully used in the material-handling industry for more than 30 years to control explosive dust at transfer points. Today, fogging systems are an EPA Best Demonstrated Technology for subbituminous coal preparation plants.

March 8, 2022

Give Your Plant a Dust Control Tune-Up

Give Your Plant a Dust Control Tune-Up: Every piece of equipment that transports or processes coal creates some level of particulate matter. Having a strategy for coal dust management in your plant is essential.

March 4, 2022

Coping with Coal Dust

Coping with Coal Dust: Plants can no longer sweep coal dust under the rug and ignore the health and safety hazard it presents, because a single spark can cause a dust explosion that could put a plant out of service, perhaps permanently. Managing dust in a power plant begins with good housekeeping, followed by retrofits using properly designed equipment.

February 22, 2022

Safety and Digitalization Big Parts of Sustainability

Safety and Digitalization Big Parts of Sustainability: Company leaders around the globe are more focused than ever on sustainability. The trend has been driven not only by an innate human desire to “do the

February 6, 2022

Safe Temporary Power and Lighting Strategies For Refinery Turn-around Activities

 https://www.electricalsafetypub.com/news-headlines/safe-temporary-power-and-lighting-strategies-for-refinery-turn-around-activities/

February 2, 2022

IGNITION SOURCES - IDENTIFICATION AND CONTROL HSE UK

 Ignition sources may be:

Flames;
Direct fired space and process heating;
Use of cigarettes/matches etc;
Cutting and welding flames;
Hot surfaces;
Heated process vessels such as dryers and furnaces;
Hot process vessels;
Space heating equipment;
Mechanical machinery;
Electrical equipment and lights
Spontaneous heating;
Friction heating or sparks;
Impact sparks;
Sparks from electrical equipment;
Stray currents from electrical equipment
Electrostatic discharge sparks:
Lightning strikes.
Electromagnetic radiation of different wavelengths
Vehicles, unless specially designed or modified are likely to contain a range of potential ignition sources

Sources of ignition should be effectively controlled in all hazardous areas by a combination of design measures, and systems of work:
Using electrical equipment and instrumentation classified for the zone in which it is located. New mechanical equipment will need to be selected in the same way. (See above);
Earthing of all plant/ equipment (see Technical Measures Document on Earthing)
Elimination of surfaces above auto-ignition temperatures of flammable materials being handled/stored (see above);
Provision of lightning protection
Correct selection of vehicles/internal combustion engines that have to work in the zoned areas (see Technical Measures Document on Permit to Work Systems);
Correct selection of equipment to avoid high intensity electromagnetic radiation sources, e.g. limitations on the power input to fibre optic systems, avoidance of high intensity lasers or sources of infrared radiation
Prohibition of smoking/use of matches/lighters
Controls over the use of normal vehicles
Controls over activities that create intermittent hazardous areas, e.g. tanker loading/unloading
Control of maintenance activities that may cause sparks/hot surfaces/naked flames through a Permit to Work System
Precautions to control the risk from pyrophoric scale, usually associated with formation of ferrous sulphide inside process equipment
Direct Fired Heaters, Hot Oil Systems and Processes Operating Above Auto-Ignition Temperatures

SOURCE: https://www.hse.gov.uk/comah/sragtech/techmeasareaclas.htm

January 28, 2022

Explosion Relief Vents for Highly Effective and Economical Explosion Protection

 https://bulkinside.com/bulk-solids-handling/explosion-protection-process-safety/explosion-relief-vents-for-highly-effective-and-economical-explosion-protection/

January 20, 2022

PREVENTING COMBUSTIBLE DUST EXPLOSIONS

 https://bulkinside.com/bulk-solids-handling/explosion-protection-process-safety/preventing-combustible-dust-explosions/

January 16, 2022

IGNITION RISKS OF ELECTROSTATIC CHARGE

 https://bulkinside.com/bulk-solids-handling/explosion-protection-process-safety/background-to-the-ignition-risks-of-electrostatic-charge/

January 12, 2022

SUGAR AS AN EXPLOSION RISK

 https://bulkinside.com/bulk-solids-handling/explosion-protection-process-safety/sugar-explosion-risk-grounding-helps/